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Introduction

Stereotactic body radiotherapy (SBRT), which is also known 
as stereotactic ablative radiotherapy (SABR), has been 
established as a treatment for early-stage inoperable non-
small cell lung cancer (NSCLC) in several international 
guidelines. One of the earliest phase I study data in lung 
SBRT was first published in 2003 by Timmerman and 
colleagues (1), with the same group subsequently reporting 
excellent phase II results (2). These two trials and similar 
landmark studies, now form the basis for lung SBRT 
practice internationally.

Although SBRT is a proven treatment option for early 

stage inoperable NSCLC, it is still fairly new and not 
available in many developing parts of the world. There 
are still uncertainties with regards to optimal radiotherapy 
dose-fractionation regimen and because of the large ablative 
doses used in SBRT, there is a potential for significant side 
effects. In this paper, we elaborate on the common toxicities 
reported in literature in relation to SBRT of lung tumors as 
well as factors that may increase these risks.

Organs at risks (OAR)
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SBRT of lung tumors can be divided into general radiation 
therapy related, like fatigue, and specific toxicities relating 
to structures within the thorax such as the heart, chest wall 
(CW), lung, major airways, greater vessels and esophagus. 
Collectively, these structures are known as organs at risks. 
This is especially important to tumors located close to these 
structures [e.g., centrally located tumors (Figure 1)] or in 
situations where a patient may be at greater risk of toxicities 
(e.g., patients with reduced lung function). 

The radiobiological effects of extreme hypofractionation 
on tissues are not fully understood (5-7) and existing models 
may not provide accurate normal organ tolerances (8). It is 
thus not advisable to freely apply the OAR dose limits used 
in conventional radiotherapy on SBRT. However, due to 
the lack of long-term data and limited patient numbers, the 
linear-quadratic model is still often used for radiotherapy 
planning. 

In 2010, with the increasing use of SBRT, the American 
Association of Physicist in Medicine Task Group 101 
(AAPM TG101) (9) published their recommendations 
of OAR dose constraints (Table 1) in the first attempt 
at guiding radiotherapy planning. Notably, most of the 
recommended constraints were derived anecdotally and not 
validated. Subsequent published studies have helped refine 

organ constraints further with reasonable toxicity rates 
reported so far.

Reported toxicities in prospective series

Many well conducted prospective trial protocols have 
published OAR dose limitations (Table 1). These serve as 
guidelines for many centers and allow the safe and effective 
delivery of SBRT techniques.

Radiotherapy related toxicities are graded by severity based 
on the Common Terminology Criteria for Acute Adverse 
Events (CTCAE) (15) or the RTOG/EORTC (16) late 
radiation morbidity scoring schema. However, a common 
problem when reporting toxicities is the interplay of 
other factors e.g., infection, systemic treatment toxicities 
or comorbidities like chronic obstructive pulmonary 
disease (COPD) and tumor progression that can make 
the direct attribution from radiotherapy alone hard to 
interpret. Nonetheless, grade 3 toxicities and above  
(≥ G3) are considered severe as there would be impairment 
of function requiring some form of intervention.

A literature review of SBRT primary lung prospective 
trials was performed. Nineteen trials, from 21 published 
articles and 5 abstracts were found, with a total of 1,381 
patients reported. Data that was reported from the same 
center and trial were combined as the patients were 
assumed to be from the same cohort. The study, trial 
type, size, tumor criteria, radiotherapy dose-fractionation, 
median follow-up and reported ≥ G3 toxicities are tabulated  
(Table 2). Reported ≥ G3 toxicities rates ranged from 
0–29.8%. There were 21 cases of grade 5 (G5) toxicities.

From Table 2 we see that SBRT doses vary between 
centers. Choice of dose regimen and are often determined 
by physician comfort, tumor and patient characteristics. 
These trials along with other retrospective series have 
increased our appreciation for the toxicities in lung SBRT 
and provided the evidence for organ dose tolerances. 
Recognizing these potential toxicities allows us provide an 
informed decision and allow for safe delivery of treatment.

Toxicities by site

Lung

One of the most common toxicities related to SBRT of the 
lung is radiation pneumonitis (RP) (Figure 2), which can 
range from asymptomatic to symptomatic breathlessness, 
fevers, cough and even death from respiratory failure. 

Figure 1 Central “no-fly” zone (light green dashed lines) was 
initially defined by Timmerman et al. (3) as tumor within or 
touching the zone 2 cm in all directions around the proximal 
bronchial tree. The IASLC expanded this definition to include 
tumors within 2 cm to any mediastinal critical structure, including 
the esophagus, heart, major vessels, spinal cord, brachial plexus, 
phrenic and recurrent laryngeal nerve (4).
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The non-specific presentation of RP and contributory 
comorbidities can make it difficult to distinguish an acute 
episode of radiation induced pneumonitis from other 
differentials like pneumonia or COPD exacerbations. 
This makes the comparison of incidence between studies 
difficult.

In a large pooled cohort study of 505 cases (39), the rate 
of ≥ G2 and ≥ G3 pneumonitis was 7% and 2% respectively. 
There was 1 case (0.2%) of G5 pneumonitis. Time from 
RT to onset of pneumonitis was a median of 0.4 years. The 
risk can vary with some series reporting up to 12% cases of 
life-threating RP (3,40). The risk of toxicities is noted to be 
more in patients with central and large lesions (3,41). Mid-
lower lung lesions (42-44) are also at an increased risk of 
RP. This may partly be attributed to greater radiosensitivity 
of the area, functional importance of the lower lung (45) 
and increased respiratory motion (44), which results in a 
larger planning target volume (PTV). 

An association between different dosimetric parameters 

and rates of RP has been noted in several studies. Barriger 
et al. reported mean lung dose (MLD) >4 Gy (4.3% vs. 
17.6%; P=0.02) and a volume of lung receiving 20 Gy  
(V20 Gy) >4% (4.3% vs. 16.4%; P=0.03) being associated 
with an increased risk of G2-4 RP (46). Yamashita et al. and 
Inoue et al. similarly reported the predictive significance 
of MLD and V20 Gy (40,47). The ipsilateral MLD  
>9.14 Gy, total lung V5, V15, V20, V25 and V40 Gy ≥6.3% 
have also been associated with higher rates of RP (48-50). 
Doses to the contralateral lung V5 Gy >26% and MLD 
>3.6 Gy have been associated with increased rates of RP as 
well (51,52). Another parameter looked at is the conformity 
index (CI) which measures the ratio of volume treated to 
prescribed dose over the PTV. This is ideally kept as close to 
1 as possible, to ensure the high dose region conforms to the 
target volume. Notably, RP occurs at a significantly increased 
frequency in patients with poor CI (P=0.0394) (40). 

Patient related factors such as older age, pre-existing 
pulmonary comorbidities and female gender are associated 

Figure 2 Case of grade 3 radiation pneumonitis (A) a 66-year-old male smoker with 3.5 cm peripheral primary lung tumor. CT scan shows 
bilateral emphysematous changes at the apices; (B) 6.5 months after SBRT of 48 Gy/4#. Patient had fever, cough and shortness of breath 
that did not improve with a course of antibiotics. Chest X-ray shows left upper and right middle zone air-space opacities; (C) CT scan shows 
left upper zone focal consolidation with patchy ground-glass changes in other areas in the lung. Patient was diagnosed with G3 radiation 
pneumonitis; (D) CT performed 2 months after treatment with steroids showed near resolution of previously noted parenchymal opacities. 
Scarring, volume loss and traction bronchiectasis in location of previous tumor. The V20 Gy was 4.3% (lungs-GTV) and 9.1% (ipsilateral 
lung). CT, computed tomography; GTV, gross tumour volume.

A

D

B

C
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with increased risk of RP (53-56). Interestingly, smoking 
was found to be protective against RP in some studies 
(54,57-60). Genetic factors such as single nucleotide 
polymorphisms (SNPs) of heat shock protein beta-1 
(HSPB1) (61), methylene tetrahydrofolate reductase gene 
(MTHFR; rs1801133) (62), vascular endothelial growth 
factor (VEGF) gene (63), ataxia-telangiectasia mutated 
(ATM) (64-66) and Nijmegen breakage syndrome 1 (NBS1) 
genes (66) are also at increased risk of RP.

A pulmonary function test (PFT) done before SBRT 
does not always predict for RP (21,67). Changes in 
post-treatment PFT are usually minimal (18,23,24,68), 
although it will be decreased in the presence of RP or lung  
disease. The presence of baseline interstitial lung 
disease (48,49,69-71) and collagen vascular disease 
(CVD) (72) is a significant predictor of RP. In patients 
with idiopathic pulmonary fibrosis, the pre-treatment 
18F-fluorodeoxyglucose (FDG) on positron emission 
tomography (PET) non-target lung uptake may serve as a 
biomarker for degree of baseline inflammation and predict 
the risk for RP (73).

Inflammatory cytokines to predict for RP has been 
extensively studied. Plasma transforming growth factor 
beta (TGFβ) is a cytokine which stimulates proliferation 
of fibroblasts, collagen synthesis and associated pulmonary 
fibrosis. It is chronically elevated in patients with  
CVD (72). TGFβ-1 polymorphisms (74) and elevated levels 
of TGFβ-1 after radiotherapy have been associated with an 
increased RP risk (75,76). Other serum biomarkers such as 
elevated pre- & post-treatment interleukin (IL)-6 (77,78) 
and IL-8 (79) have been associated with higher rates of RP. 
Pre-treatment levels of Krebs von den Lungen (KL-6), a 
circulating mucin-like glycoprotein expressed and secreted 
from bronchial epithelial cells and type II pneumocytes, and 
lung surfactant protein (SP-D) are also associated with an 
increased risk of severe RP (80). Elevated post-treatment 
KL-6 levels are correlated to higher RP incidence as  
well (81).

To date, these markers are not routinely screened and 
have not been prospectively validated for clinical use. In the 
future, a combination of biomarkers, patient and dosimetric 
parameters may improve the ability to predict RP and allow 
for better individualization of target doses to reduce lung 
toxicities.

Heart 

A wide spectrum of heart toxicities are noted following 

conventional radiotherapy. Early toxicities include 
pericarditis and pericardial effusion. Late toxicities manifest 
10–15 years after radiotherapy as disease of the coronary 
arteries, heart valves, conductive system and myocardium. 
Microvascular changes and accelerated coronary sclerosis 
are thought to contribute to the process (82). Studies on 
radiation effects of the heart are mostly obtained from 
conventionally treated breast and mediastinal lymphoma 
patients. Darby et al. showed a 7.4% increased risk of 
ischemic heart disease per Gy (mean heart dose) (83). 
An RTOG 0617 trial randomized patients between high 
vs. standard conventional dose RT for lung cancer and 
reported heart V5 and V30 Gy as significant predictors for 
worst survival (84,85).

The effects SBRT doses have on the heart are less 
understood. A large retrospective analysis of 803 patients 
treated with SBRT reported that maximum point dose 
(Dmax) to the left atrium of median 6.5 Gy (P=0.035) and 
dose to 90% of the vena cava (D90%) of median 0.59 Gy 
(P=0.008) were both associated with non-cancer deaths (86). 
Increased cardiac uptake on FDG PET after SBRT may be 
a marker of radiation induced myocardial injury and was 
noted to be associated with a cardiac V20 Gy >5 cm3 (87). 

An institution in Florence treated 16 patients with 
paracardiac/cardiac lesions up to 36 Gy in 3 fractions 
at the 70% isodose line. At a median follow-up of  
6.7 months, no cardiac event or echocardiography 
changes were noted (88). However, it is important to note 
that SBRT patients tend to have a better prognosis and 
therefore a longer time to develop late heart toxicities. It 
is thus advisable to keep heart doses to a minimum during 
radiotherapy planning.

Major vessels

Major vessels include the aorta, pulmonary vessels and 
superior vena cava. Radiation damage to these structures 
can result in hemoptysis, exsanguination secondary to 
rupture, aortic aneurysms or dissection and pulmonary 
hemorrhage.

Xue et al. recently published a logistic dose-response 
model for aorta and major vessels based on a total of 625 
cases. They estimated that at Dmax =52.5 Gy in 5 fractions, 
the risk of grade 3–5 toxicity was 1.2%. At Dmax =45 Gy 
in 3 fractions, the risk was 2.3% (89). They concluded 
that following internationally recommended constraints, 
sufficiently high doses can be achieved with low risks to the 
vessels. 
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Central airways

The proximity of centrally located lesions increases 
the risk of central airways toxicities. This can result in 
atelectasis, stenosis/stricture, airway necrosis, fistula 
formation or even fatal hemoptysis (90). A phase II study 
from Indiana University reported 11-fold higher risk of 
G3–5 toxicities, with 4 deaths associated with central 
location (3). The most common severe toxicity in the trial 
were hemoptysis, stenosis, airway occlusion and fistula 
formation. At median follow-up of 50.2 months, the risk 
of toxicity remained higher compared to peripheral lesions 
(27.3% vs. 10.4%) (17).

At conventional high dose (≥73.6 Gy) RT, Kelsey 
reported a 6% to 57% narrowing of mainstem bronchus 
in 17 of 18 patients (91). The degree of stenosis was 
dose dependent and progressed with increasing time 
after radiotherapy. It was worse if the patient received 
chemotherapy. 

With SBRT, Song et al. reported that at doses of  
40–60 Gy in 3–4 fractions to central tumors, 8 of 9 patients 
(89%) showed complete or partial bronchial stricture at a 
median follow-up time of 26.5 months (92). Karlsson et al. 
prescribed doses of 20–50 Gy in 2–5 fractions for central 
tumors and reported incidence of 24.3% radiation-induced 
atelectasis at a median time of 8 months (1.1–30.1 months). 
On analysis, there was a dose dependent correlation. The 
median 2 Gy equivalent doses to 0.1 cm3 of bronchial tree 
in patients who developed atelectasis was 210 vs. 105 Gy in 
who did not (P=0.031) (93). 

Duijm et al. reported results in 134 patients treated 
with SBRT to central tumors. They correlated toxicities in 
different parts of the airway with dosimetric parameters. 
Higher grade toxicities such as occlusion and atelectasis 
were reported in the lobar and segmental bronchi. When 
0.5 cc of segmental bronchi was irradiated to 50 Gy in  

5 fractions, the likelihood of occlusion was 50%. For the 
mid- and mainstem bronchi, the 50% risk to develop grade 
1 radiographically evident side effects was a Dmax of 55 and 
65 Gy respectively (94).

Fatal hemoptysis attributed to high-dose RT are 
uncommon but have been reported in literature (95-98).

Esophagus

The esophagus is another dose limiting organ in central 
lung SBRT. Reported side effects range from mild 
esophagitis to life-threatening strictures, perforations and 
trachea-esophageal fistulas (1,99). Cox et al. reported 6.8% 
≥G3 esophageal toxicities in 182 patients treated with 24 Gy 
single fraction paraspinal radiosurgery (100). The incidence 
increased with higher doses-volumes. At the median split 
D2.5 cm3 >14.02 Gy, the risk was increased 6-times (P=0.01). 
They recommended a Dmax of 22 Gy. 

However, despite keeping SBRT doses-volume to 
constraints that are considered safe (D5 cc 14.5 Gy, D2 cc 
15–20 Gy, and Dmax of 19 Gy), Abelson et al. reported 2 
incidence of high grade toxicities (esophageal fistula and 
esophageal perforation) in 31 patients (101). Notably, these 
2 patients had received chemotherapy which is felt to be a 
co-factor. 

In a systematic review, which included data from 563 
central lung tumors from 20 studies, the incidence of G3–4 
toxicities was 8.6% (102). The risk of treatment related 
mortality was reduced when tumor biological equivalent 
dose (BED) was <210 Gy (3.6% vs. 1%). The authors 
concluded that acceptable control and limited toxicities 
could be achieved with appropriate fractionation regimens 
e.g., 50 Gy in 5, 54 Gy in 6, 56 Gy in 7 and 60 Gy in 8. 

Further research is needed to establish more reliable 
dose limits for mediastinal structures. The RTOG 0813 
(12,32), Nordic-HILUS (34) and EORTC LungTech (103) 

Figure 3 Asymptomatic rib fracture (blue arrow) noted 33 months after 48 Gy/4# SBRT of a peripheral tumor. The chest wall V30 Gy was 
83.6 cc.
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trials are phase II SBRT trials that will provide a better 
understanding of treatment of central lung tumors.

CW, skin and ribs

CW pain, rib fractures (Figure 3) and skin toxicities are 
associated with peripheral lung tumors. The mechanisms 
for CW pain are unclear and suspected to be due to damage 
of soft tissue, neurovascular bundle and bone (104). The 
correlation between rib fractures and CW pain is less 
certain, with majority of CW pain presenting without rib 
fractures or vice versa (105,106).

Creach et al.  reported that CW doses receiving  

V30–40 Gy was most predictive of CW pain. A V30 Gy 
threshold of 0.7% and V40 Gy threshold of 0.19% was 
correlated with a 15% risk of CW pain (106). Mutter et al. 
reported similar findings in that V30 Gy >70 cm3 correlated 
with the presence of CW pain (104). Stephans et al. reported 
similar dose volume constraints and by maintaining V30 Gy 
≤30 cm3 and V60 Gy ≤3 cm3 should result in a <10–15% 
risk of late CW toxicity (107).

Grills et al. reported in 483 patients, the incidence of 
rib fracture was 8% at median time of 0.9 years. This 
was associated with a higher BED and the optimal BED 
cut off was 132 Gy (11% vs. 5%; P=0.007) (39). Other 
reported parameters for dose constraints to rib or CW are  
Dmax =50 Gy, V40 Gy <5 cc (105) and the dose to 2 cm3 of 
rib (D2 cm3). At rib D2 cm3 <21 Gy/3#, the risk of the ribs 
fracture is close to 0%. At 27.3/3# and 49.8/3#, the risks are 
5% and 50% respectively (108).

Obesity, diabetes and posterior tumors close to skin 
surface at an increased risk of skin and CW toxicities 
(109,110). Treatment factors to reduce skin toxicities 
should be undertaken by reducing the bolus effects from 
immobilization devices, calculating the skin doses and 
using multiple non-coplanar beams. The recommended 
constraints to skin reduce toxicities were reported as Dmax 
<50% prescribed dose (110), and reducing the volume 
of the CW receiving 30 Gy (V30 Gy <50 mL, 22% vs.  
≥51 mL, 44%; P=0.02) (109). 

Bonger’s et al. compared different fractionation regimens 
in which 60 Gy was delivered in 3, 5 or 8 fractions 
depending on tumor location and did not note a significant 
difference between CW toxicities (111). However, in 
challenging cases not meeting dose constraints, longer 
fractionation regimens e.g., 70 Gy in 10 fractions may be a 
suitable alternative to reduce the risk of CW toxicities and 
produce similar local control rates (112).

Brachial plexus

Brachial plexus injury can happen during SBRT of apical lung 
tumors. Injury to the plexus can present as neuropathic pain 
in the shoulder or arm, motor weakness or paresthesia (113). 
Chang et al. reported that in patients with central tumors, 
the brachial plexopathy incidence was higher when Dmax 
>35 Gy and V30>0.2 cm3 (P=0.001) (114). By limiting total 
dose delivered to the plexus to <26 Gy in 3–4 fractions, 
there would be a decreased risk of brachial plexopathy at  
2 years (46% vs. 8%, P=0.04) (115).

Table 3 MD Anderson Cancer Centre (130-132) critical organ 
dose—volume limits for central and superior NSCLC lesions 
with 50 Gy in four fractions SBRT re-irradiation

Organ Volume (cc)
Total dose/dose per 

fraction (Gy)

Esophagus ≤1 35/8.8

≤10 30/7.5

Brachial plexus Any point <40

≤1 35/8.8

≤10 30/7.5

Trachea ≤1 35/8.8

≤10 30/7.5

Main bronchus and 
bronchial tree

≤1 40/10

≤10 35/8.8

Heart ≤1 40/10

≤10 35/8.8

Whole lung 
(excluding GTV)

V20 <20%

V10 <30%

V5 <40%

Major vessels ≤1 40/10

≤10 35/8.8

Skin (to 5 mm) ≤1 40/10

≤10 35/8.8

Spinal cord ≤1 20/5

≤10 15/3.8

NSCLC, non-small cell lung cancer; SBRT, stereotactic body 
radiotherapy; GTV, gross tumour volume.
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Thoracic re-irradiation

Recurrent lung tumours after prior radical treatment poses 
technical challenges due to concerns of cumulative doses. 
SBRT of recurrent lesion could possibly provide better 
control benefit and reduce the toxicities because of smaller 
margins and tighter dose constraints. Most of the data 
comes from retrospective reports and a few prospective 
studies of both conventional and hypofractionated regimens.

Irradiation outcomes after SBRT reirradiation have yielded 
variable toxicity results. Reported severe ≥ grade 3 toxicity 
rates varied between 0% in some studies (116-122), to as high 
as a 10% incidence of G5 bleeding (123). Some studies 
noted no association between toxicities and lung dosimetric 
parameter, BED or overlap with prior radiotherapy fields 
(123-126). The risk is however increased with central 
tumour reirradiation. 

Kilburn et al. (127) reported an incident (9.1%) of grade 
5 aorta-esophageal fistula after reirradiation of a central 
tumour. The patient’s aorta and esophagus had received 
an estimated summed EQD2 of 200 and 106 Gy (128) 
respectively. Trovo et al. (125) reported high incidences of 
grade 5 (1 pneumonitis and 1 hemoptysis) and grade 4 (4 
pneumonitis) toxicities after 30 Gy in 5–6 fractions in 17 
patients with central tumour recurrences. The heart Dmax 
(mean 27 vs. 10 Gy), D5 (minimum dose to at least 5% of 
the heart volume) (mean 10 vs. 5 Gy) and D10 (mean 7 vs.  
3 Gy) were associated with risk of severe pneumonitis. 
Peulen et al. (123) reported 3 deaths (10.3%) from massive 
bleeding and 1 grade 4 toxicity (superior vena cava stenosis 
and gastro-tracheal fistula) in patients with central lesion 
(n=11) vs. no G4–5 toxicity in peripheral lesions (n=21). 
Patients with a larger initial and reirradiation CTVs and 
a shorter interval between initial SBRT and reirradiation 
were at risk of more severe toxicities. Evans et al. reviewed 
patients who had undergone retreatment radiotherapy. Two 
of 35 (5.7%) patients had G5 toxicities at a median follow-
up of 42 months. When 1 cm3 of aorta had a composite 
dose of ≥120 vs. <120 Gy, the rate of G5 aortic toxicity was 
25% vs. 0% respectively (P=0.047) (129).

A team from MD Anderson have reported the largest 
cohort series of lung SBRT reirradiation so far. Early results 
after doses of 50 Gy in 4 factions, reported grade 3 toxicities 
of dermatitis, CW pain and brachial plexopathy (130) which 
were appeared related to high doses of >35 Gy to skin and 
ribs and >40 Gy to brachial plexus respectively. Subsequent 
reports (131,132) in larger cohorts reported incidences of 
grade 3 esophagitis, CW ulcers and cough. The reported 

severe pneumonitis rates was 20.8% (132). Analysis showed 
association between grade 3 pneumonitis and out-of-field 
relapse (131), ECOG 2-3 and FEV1 ≤65% before SBRT, 
V20 ≥30% of the composite plan, and an previous PTV 
spanning bilateral mediastinum (132). It is proposed that 
possible reason lesser rates of pneumonitis were noted in-
field relapses was that previously irradiated areas are fibrotic 
and less susceptible to additional damage from RP. CW 
pain requiring narcotics was more common in patients 
with in-field relapses. The dose constrains used were  
reported (Table 3).

Recently Chao et al. (133) reported a multi-institutional 
prospective trial using proton therapy for lung irradiation 
in 57 patients recurrent NSCLC. Median reirradiation 
dose prescribed was 66.6 Gy with 68% having concurrent 
chemotherapy. Cumulative point dose constrain to the spinal 
cord was 75 Gy (RBE). Forty-two percent ≥ grade 3 acute 
or late toxicities were reported at a median follow-up of 7.8 
months. There were 6 possible or probable RT related grade 
5 toxicities—bronchopulmonary hemorrhage, neutropenic 
sepsis, anorexia, pneumonitis, hypoxic respiratory failure/
pleural effusion and tracheoesophageal fistula. Central region 
overlap (≥41 cm3), concurrent chemotherapy, composite 
mean heart dose ≥3.94 Gy and median esophagus dose of 
≥12.45 Gy were associated with more toxicities.

The interpretation of results from various trials can be 
difficult because of heterogeneous cohorts and individually 
small numbers. De Bari et al. (128) and the MD Anderson 
(130-132) group have published their dose constraints 
recommendations. However, as there still many variables 
that cannot be accounted for e.g., disease free interval, 
previous radiation toxicities, individual characteristics, 
the OAR constraints in this setting remains poorly  
defined (134). Outcome results are promising but caution 
must still be exercised especially in reirradiation of centrally 
located tumors.

Conclusions

Published literature in lung SBRT have reported good local 
control rates with acceptable toxicity profiles. However, 
with the high doses per fraction used, there is an increased 
risk of normal tissue toxicity compared with conventionally 
fractionated radiation therapy. Care must be taken to 
minimize radiation exposure to normal structures. This 
is especially important for centrally located tumors. The 
available trial protocols and international consensus serve as 
good guidelines for SBRT dose constraints. Different dose-
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regimens have been used to increase the BED delivered and 
reduce toxicities. Future trials will aid in our understanding 
of the organ dose tolerances. Studies in biomarkers and 
individual patient risks are underway to better tailor our 
SBRT treatments.
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