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Background

MicroRNAs (miRNAs) are endogenous ~22-nucleotides (nt) 
RNA molecules, that negatively regulate gene expression at 
the post-transcriptional level and have a role in networking 
and fine-tuning gene expression in the cell (1). The miRNA 
maturation process begins with the primary long transcript 
(pri-miRNA), which is first processed by an RNase, 
termed Drosha, that cuts it into ~70-nt stem-loop (SL) 
precursor (pre-miRNA), containing the mature miRNA 
sequence in one of its arms and the less abundant partially 
complementary miRNA mature form in the other arm 
(2,3). After the first processing step, pre-miRNA is actively 
transported by exportin-5 (XPO5) from the nucleus to the 
cytoplasm, where it is processed by another RNase, termed 
Dicer (4,5). The result of this processing event is a double 
stranded RNA, where one of its strands is incorporated into 

the argonaute (Ago) protein of the RNA-induced silencing 
complex (RISC) that targets it to a 3’ untranslated region 
(3’UTR) of a specific mRNA and leads to its degradation (1). 

A comprehensive reduction in miRNA was commonly 
observed in human cancers, where miRNAs showed lower 
expression levels in tumors and cancer cell lines compared 
with normal tissues (6-9). A widespread repression of 
miRNA expression has also been reported after exposure 
to cigarette-smoke (CS) (10-12), treatment with the 
hormone estrogen (13-15), and c-Myc activation (16), and 
the observed global downregulation of miRNAs was also 
inversely correlated with their predicted targets. These 
aforementioned alterations in miRNA expression can 
occur as a result of affecting the transcription of miRNA 
genes (16), miRNA export from the nucleus (17), or at any 
stage of the miRNA maturation process by modulation of 
key regulators or components of the miRNA biogenesis 
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pathway, including the microprocessor complex Drosha-
DGCR8, and Dicer (18).

Guanine enrichment in TL sequences of cancer/
estrogen/Myc-repressed miRNAs

There are several indications for the importance of guanine 
(G) content in miRNAs TL sequences to the regulation of 
their biogenesis and function. Izzotti and Pulliero showed 
in their study that the G content of the TLs of miRNAs 
which are involved in stress response, is higher than the G 
content of the other miRNAs (19). We have recently found 
an association between the widespread miRNAs reduction 
that is observed in human cancers and a high TL G content 
in their precursors (20,21). Using bioinformatic analysis 
of zebrafish, mouse, and human breast cancer cell lines, 
we also showed that similar G enrichment exists in TLs of 
downregulated miRNAs after estrogen (17β-estradiol; E2) 
exposure (22), and most striking was the observation that of 
the different G combinations in TL sequences of both cancer 
and E2-repressed miRNAs, the relative enrichment of double 
G (GG) and triple G (GGG) was especially dominant (21).  
Remarkably, this phenomenon is also observed when 
looking at the ten most c-Myc-repressed miRNAs of 
a human B cells model (16), where six of them are also 
common to cancer-repressed miRNAs (miR-15a, miR-24,  
miR-29a, miR-29c, miR-125b, miR-195) (20), and the 
other four to E2-repressed miRNAs (miR-23a, miR-23b, 
miR-26a, miR-27a) (22). The transcription factor c-Myc 
physically interacts with estrogen receptor alpha (ERα) 
and is recruited to estrogen-responsive genes (23). Indeed, 
estrogen can cause cellular growth, proliferation and cancer 
by inducing oncogenes such as c-Myc (24). Therefore, 
part of the global miRNA downregulation that is observed 
after exposure to estrogen, might be attributed to c-Myc 
regulation. It is interesting to note, however, that c-Myc 
activation was also shown to be associated with an altered 
estrogen metabolism (25). The potential carcinogenic 
activity of estrogen involves the oxidative metabolism of 
estrogens to catechol estrogens and the reactive quinone 
metabolites, that form specific DNA adducts at the N-7 
G (26,27), and it was shown that miRNAs are even more 
sensitive than DNA to the formation of G-adducts (19). 
These adducts generate apurinic sites that can be converted 
into mutations by error-prone repair, which in turn may 
initiate tumorigenesis (28). Also, oxidative metabolites of 
estrogens can react with DNA to form 8-oxo-dG (8-Oxo-
2’-deoxyguanosine); the most frequent DNA oxidative 

damage, which eventually leads to carcinogenesis (29),  
because G has lower oxidation potential and is most 
easi ly  oxidized among the four DNA bases  (30) .  
Most interestingly, experimental studies have shown that 
sequences with repeated G bases (GG or GGG) show 
higher reactivity toward oxidation than isolated G bases (31).

Alterations of G nucleotides in pre-miRNA TL 
affect miRNA expression level

Several successive studies, conducted by the Chen’s group, 
have shown that G substitution in pre-miRNAs TLs 
disrupt their maturation process. In their study, Liu et al.  
demonstrated that pre-miRNA loop nucleotides play an 
important role in controlling the biological activity of 
miRNAs (32). Specifically, substitution of nucleotides GG 
to CC in the pre-miRNA loop of miR-181a-1 reduced the 
activity of mir-181a-1 on T cell development by 70%, and 
cells transfected with this mutant expressed significantly 
less mature miR-181a (32). Similarly, using a GG to CC 
loop mutant of let-7 pre-miRNA resulted in a significant 
reduction in mature miRNA expression levels and in 
the activity of target gene repression (33,34). Together, 
the results of these studies show that terminal loop (TL) 
mutagenesis of GG affects miRNA level and function, 
which seems to be caused by alterations of loop sequence 
and/or structure.

G-enriched motifs in miRNA TL sequences affect 
miRNA processing

Findings suggest that the miRNA TL is an important 
platform for different RNA-binding proteins (RBPs) 
that act as activators or repressors of Drosha and Dicer 
processing, and selectivity regulate miRNAs by binding to 
G-enriched motifs in the RNA TLs of their precursors (35).  
It was shown that miRNAs with the tetra-nucleotide 
sequence motif GGAG in their TL were regulated 
through binding of the RBP Lin28, which interferes with 
Dicer processing (36), and that the sequence AGGGU 
in the TL mediates regulation of miRNA biogenesis by 
the KSRP RBP (37). In their study, García-Mayoral et al.  
described the complete analysis of the RNA-binding 
potential of the four KH domains of KSRP and showed 
that the KH3 domain can recognize a G-rich sequence (38).  
Insertion of an isolated G led to a 5-fold increase in 
KH3 affinity, whereas insertion of a GG element led to a 
further 4-fold increase (38). Interestingly, KH3 binding 
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docks KSRP to the GGG-containing TL of a subset of 
miRNAs and promotes their maturation (37). Of note, our 
results revealed a high enrichment for the sequence motif 
GGAG in TLs of cancer and E2-repressed miRNAs (20,22). 
Moreover, also a significant enrichment of the GGG motif in 
TLs of these miRNAs was observed (21). Therefore, G-adducts 
formation that disrupts binding of KSRP to the TL might 
be a possible cause for the observed cancer and E2-repressed 
miRNAs. Indeed, it was recently shown that modification of 
KSRP resulting in the downregulation of a subset of TL G-rich 
miRNAs and promoting tumorigenesis (39).

Dietary anti-estrogenic phytochemical 
compounds used for cancer chemoprevention

It is well known that dietary phytochemicals from vegetables 
and fruits exhibit chemopreventive activities against various 
types of cancer (40). Administration of the dietary agents 

Phenethyl Isothiocyanate (PEITC) and Indole-3-Carbinol 
(I3C), two major components of cruciferous vegetables, 
attenuated the cigarette smoke-induced downregulation 
of miRNA expression (41). The combined treatment 
with PEITC and I3C had profound effects on almost all 
CS-downregulated miRNAs and their expression even 
exceeded the baseline situation (41). PEITC, which has 
both chemopreventive and chemotherapeutic effects (42), 
was also the most effective agent in inhibition of CS-related 
cytogenetic damage, transcriptome alterations, and lung 
tumorigenesis (43-45). Also, I3C and its condensation 
product 3,3’-diindolylmethane (DIM) exhibited potent 
anti-tumor effects with negligible levels of toxicity in a wide 
range of human cancer cells, including lung cancer (46). 
Interestingly, both PEITC and I3C have proved to be anti-
estrogenic compounds and inhibited ERalpha expression 
(47-51). Furthermore, PEITC was shown to significantly 
inhibit the formation of the xenoestrogen bisphenol A 
(BPA)-induced DNA adducts in mice (52).

Another compound that has anti-estrogenic effects is 
the dietary polyphenol derived from grapes, Resveratrol 
(RES). This natural product is known as an antioxidant and 
antimutagen, with cancer chemopreventive activity (53).

The Cavalieri-Rogan’s groups have described in multiple 
reports that RES decreases estrogen metabolism, and 
prevents estrogen-DNA adduct formation (54-57). In these 
studies, RES was shown to block the oxidation of catechol 
estrogens to their quinones and their reaction with DNA, 
and by this way to prevent cancer initiation (27). Both 
RES and Sulforaphane (SFN), additional isothiocyanate 
of cruciferous, were shown to induce protective phase II 
enzymes activity, resulting in reduction of estrogen-induced 
DNA damage (58).

Conclusions

Taken together, the above results suggest that G content, 
especially GG and GGG, in miRNA TL sequences, may 
have some important role in the carcinogenic process 
induced by estrogen and c-Myc. As mentioned before, 
the mechanisms of estrogen carcinogenesis include 
unbalanced estrogen metabolism and the formation 
of G-adducts, which can also potentially be formed in 
miRNA TLs. This raises the possibility that G oxidation 
and/or formation of G-adducts in TLs may lead to the 
extensive downregulation of tumor suppressor miRNAs, 
which will then cause induction of their target oncogenes, 
and commit cells towards carcinogenesis (Figure 1).  

Figure 1 A model summarizing the miRNA biogenesis pathway 
and its possible regulation through G enrichment in miRNAs TLs. 
Disruption of transcription and processing of tumor suppressor 
miRNAs (denoted by the red crosses) by Estrogen/Cigarette 
smoke/Myc may lead to carcinogenesis, while phytochemical 
compounds (PEITC, I3C, SFN, RES) may potentially prevent it.
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Indeed, several of the repressed miRNAs were shown to 
function as tumor suppressors (21), and were upregulated 
by dietary phytochemical agents such as PEITC, I3C and 
RES (59).
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